
Quantum dynamics
Exponential complexity

Wigner stochastic equations

Coherence and Phase-space II
VSSUP Lectures 2014

P. D. Drummond

January 21, 2014

P. D. Drummond Coherence and Phase-space II



Quantum dynamics
Exponential complexity

Wigner stochastic equations

Outline

1 Quantum dynamics

2 Exponential complexity

3 Wigner stochastic equations

P. D. Drummond Coherence and Phase-space II



Quantum dynamics
Exponential complexity

Wigner stochastic equations

Ultracold atoms - the ideal quantum system

ULTRALOW temperatures down to 1nK

What is different about ultracold atoms?
Atoms are trapped in a hard vacuum
Cooling to nanoKelvins or less
Can have either bosons or fermions
Atom ‘lasers’ - atoms behave as quantum objects
Correlations - mean field theory doesn’t always work
Dynamics - time-evolution is very important
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Typical experiment (Orsay, ANU)
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How to calculate dynamics?

Classical solution: - use Hamilton’s equations

ṗi = −∂H

∂qi

q̇i =
∂H

∂pi

Quantum mechanics replaces classical quantities by corresponding
operators with commutators, so that

[q̂i , p̂j ] = i h̄δij

[q̂i , q̂j ] = [p̂i , p̂j ] = 0

Then, for any operator Ô, in the Heisenberg picture:

∂ Ô

∂ t
=

1
i h̄

[
Ô, Ĥ

]
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What about mixtures of states?

Suppose the quantum system is in a mixture of quantum states
|ψm〉 with probability pm . Then the density matrix ρ̂ is defined as:

ρ̂ = ∑
m

pm |ψm〉〈ψm|

In the Schroedinger picture, we let states evolve in time, not
operators!

∂ ρ̂

∂ t
=

1
i h̄

[
Ĥ, ρ̂

]
Then, for any operator Ô, the expectation value of the observable
is: 〈

Ô
〉

= Tr
[
ρ̂Ô
]
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What is the Hamiltonian anyway?

What about the quantum fields with hats?

Here, Ψ̂i is a quantum field of spin-index i :[
Ψ̂i (x),Ψ̂†

i (x′)
]
±

= δijδ
D(x−x′)

In second quantization the quantum Hamiltonian is

Ĥ = ∑
i

∫
dDx

{
h̄2

2m
∇Ψ̂†

i (x) ·∇Ψ̂i (x) +Vi (x)Ψ̂†
i (x)Ψ̂i (x)

}
+ ∑

ij

Uij

2

∫
dDxΨ̂†

i (x)Ψ̂†
j (x)Ψ̂j(x)Ψ̂i (x) .
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What are the parameters?

This describes a dilute gas at low enough temperatures,

〈Ψ̂†
i (x)Ψ̂i (x)〉 is the spin i atomic density,

m is the atomic mass,
Vi is the atomic trapping potential & Zeeman shift
Uij is related to the S-wave scattering length in three
dimensions by:

Uij =
4π h̄2aij

m
.

Here we implicitly assume a momentum cutoff kc << 1/a
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Simplest method for state evolution

Suppose the quantum system is described by a few modes:

|ψ〉= ∑ψN |N1,N2, . . .Nm〉= ∑ψN |N〉

Then, let HNM = 〈N| Ĥ |M〉 and: ddt |ψ〉=− i
h̄ Ĥ |ψ〉

Hence, we have a simple matrix equation:

d

dt
ψN =− i

h̄ ∑
M
HNMψM

(4) Prove the last equation using orthogonality
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Problem: quantum theory is exponentially complex!

Quantum many-body problems are very large
consider N particles distributed among M modes
take N 'M ' 500,000:
Number of quantum states: Ns = 22N = 21,000,000

More quantum states than atoms in the universe
How big is your computer?
Can’t diagonalize 21,000,000×21,000,000 Hamiltonian!
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What about losses and damping?

Damping can be treated using a master equation

The density matrix ρ̂ evolves as:

d ρ̂

dt
=− i

h̄

[
Ĥ, ρ̂

]
+∑

j

κj

∫
d3rLj [ρ̂]

Here the Liouville terms describe coupling to the reservoirs:

Lj [ρ̂] = 2Ôj ρ̂Ô
†
j − Ô†

j Ôj ρ̂− ρ̂Ô†
j Ôj

For n-particle collisions: Ôi =
[
Ψ̂i (r)

]n
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Traditional quantum theory methods?

numerical diagonalisation?
intractable for & 10 modes

operator factorization
not applicable for strong correlations

perturbation theory
diverges at strong couplings

exact solutions
not applicable for quantum dynamics
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Quantum theory in classical phase-space

Properties of Wigner/Moyal phase-space

Maps quantum states into classical phase-space α = p+ ix

Wigner first published this representation
Moyal showed equivalence to quantum mechanics
Complexity grows only linearly with number of modes!

Problem: Wigner distribution can have negative values

Need to truncate equations to get positive probabilities
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Detailed equivalence

Mapping of characteristic functions

W (ααα) =
1

π2M

∫
d2Mz

〈
e iz·(â−ααα)+iz∗·(â†−ααα∗)

〉

Operator mean values〈
â†m
i ânj

〉
SYM

=
∫
d2Mαααα∗mi αn

j W (ααα) =
〈

α∗mi αn
j

〉
W

〈âj〉= 〈αj〉W〈
â†
i âj + âi â

†
j

〉
/2 = 〈α∗i αj〉W
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Dynamical equivalence

Mapping of dynamical equations

∂W (ααα)

∂ t
=

1
π2M

∫
d2MzTr

[
∂ ρ̂

∂ t
e iz·(â−ααα)+iz∗·(â†−ααα∗)

]

Operator mappings

âj ρ̂ →
(

αj + 1
2

∂

∂α∗j

)
W

ρ̂ â†
j →

(
α∗j + 1

2
∂

∂αj

)
W

â†
j ρ̂ →

(
α∗j −

1
2

∂

∂αj

)
W

ρ̂ âj →
(

αj − 1
2

∂

∂α∗j

)
W
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Example: Wigner function for a coherent state

Suppose we have a single-mode BEC in a coherent state

ρ̂ = |α0〉〈α0|

Hence:

W (α) =
1

π2

∫
d2z 〈α0|e iz ·(â−α)+iz ·(â†−α∗) |α0〉

Solution with a little algebra

W (α) =
2
π
e−2|α−α0|2

(5): show that this solution gives 〈α∗α〉= 1/2 for a vacuum state
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator

Ĥ= h̄ω â†â

∂ ρ̂

∂ t
=−iω

[
â†âρ̂− ρ̂ â†â

]
Operator mappings

â†âρ̂ →
(

α∗− 1
2

∂

∂α

)(
α + 1

2
∂

∂α∗

)
W

ρ̂ â†â→
(

α− 1
2

∂

∂α∗

)(
α∗+ 1

2
∂

∂α

)
W

∂W

∂ t
= iω

(
∂

∂α
α− ∂

∂α∗
α
∗
)
W
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Harmonic oscillator solution

General result for harmonic oscillator

∂W

∂ t
= iω

(
∂

∂α
α− ∂

∂α∗
α
∗
)
W

Solution by method of characteristics

∂α

∂ t
=−iωα

α(t) = α(0)e−iωt

(6): Prove this!

P. D. Drummond Coherence and Phase-space II



Quantum dynamics
Exponential complexity

Wigner stochastic equations

Fokker-Planck equations

Result of operator mappings:

∂W

∂ t
=

{
− ∂

∂αi
Ai +

1
2

∂ 2

∂αi∂α∗j
Dij +

1
6

∂ 3

∂αi∂α∗j ∂α∗k
Tijk + . . .

}
W

Scaling to eliminate higher-order terms

x = α/
√
N

∂W

∂ t
=

{
− 1√

N

∂

∂xi
Ai +

1
2N

∂ 2

∂xi∂xj
Dij +O

(
1

N3/2

)}
W
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Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:

∂W

∂ t
=

{
− ∂

∂αi
Ai +

1
2

∂ 2

∂αi∂α∗j
Dij

}
W

Equivalent stochastic equation

∂αi

∂ t
= Ai + ζi (t)

where: 〈
ζi (t)ζ

∗
j (t)

〉
= Dijδ

(
t− t ′

)
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Example: BEC case

Result of operator mappings + truncation - for the GPE:

dψj

dt
= iKjψj − iUij |ψi |2ψj − γjψj +

√
γjζj(x, t)

Here the linear unitary evolution of the wave-function, is described
by:

Kj = h̄∇
2/2m−Vj (r)

while ζi (x, t) is a complex, stochastic delta-correlated Gaussian
noise with 〈

ζi (x, t)ζ
∗
j (x′, t ′)

〉
= δijδ

3 (x−x′)δ
(
t− t ′

)
.

Initial fluctuations: 〈∆Ψs(x)∆Ψ∗u(x′)〉= 1
2δsuδ 3 (x−x′)
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Interferometry on an atom chip
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Interferometry

A two-component 87Rb BEC is in a harmonic trap with internal
Zeeman states |1, −1〉 and |2, 1〉, which can be coupled via an RF
field.
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Wigner simulations vs BEC fringe visibility

Blue line = Wigner simulation, black line = Wigner + local
oscillator noise, red dots = GPE, error bars are measured
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SUMMARY

Phase-space representation methods have many applications

Wigner phase-space is relatively simple!
Maps quantum field evolution into a stochastic equation
Can also be used to treat interferometry
Advantage: No exponential complexity issues!
Mathematical challenge:

truncation error needs to be checked: SEE Lecture 3!
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